
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2015

Understanding and identifying useful patterns in
location-based software
Tianyu Meng
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Meng, Tianyu, "Understanding and identifying useful patterns in location-based software" (2015). Graduate Theses and Dissertations.
14528.
https://lib.dr.iastate.edu/etd/14528

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F14528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/14528?utm_source=lib.dr.iastate.edu%2Fetd%2F14528&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Understanding and identifying useful patterns in location-based software

by

Tianyu Meng

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:

Leslie Miller, Major Professor

David Weiss

Wensheng Zhang

Iowa State University

Ames, Iowa

2015

Copyright © Tianyu Meng, 2015. All rights reserved.

www.manaraa.com

ii

TABLE OF CONTENTS

 Page

LIST OF FIGURES…..………………………………………………….………………………..iii

LIST OF TABLES.………………………………………………………..……….……….……..iv

ABSTRACT…………………………………………………………………………….…………..viii

CHAPTER 1. INTRODUCTION………………………………………………………………1

CHAPTER 2. RELATED WORK…………………………………………..………………….2

CHAPTER 3. SITUATION MODEL………………………………….………………………4

CHAPTER 4. METHODS……………………………………………….………………………5

 4.1 User Study…………………………………………………………………………………..…………..5

 4.2 Patterns……… ……………………………………………………………………………….….……..10

CHAPTER 5. RESULTS……… ..………………………………………………….….…….….12

 5.1 Overview…………………………………..…………………………………………..……………….12

 5.2 Transform the data………………………………………..…………………………..…………..12

 5.3 Results…………………………………………………………………………..…………..…….…….14

CHAPTER 6. DISCUSSION………………………………………………………….…….….28

CHAPTER 7. VALIDATION………………………………………………………….…….....31

CHAPTER 8. CONCLUSION AND FUTURE WORK…………………..…….……...34

REFERENCES……………………………………………………………………………….……..35

www.manaraa.com

iii

LIST OF FIGURES

Page

Figure 1. The interface of user study……………………………………………....6

Figure 2. The experiment of user study……………………………………………8

Figure 3. An example of the output file…………………………………………...9

Figure 4. An example of user input stream. Each line is a

scenario finished by a participant……….…………..……………..14

Figure 5. Interface of user study 2…………………………………………...…….31

Figure 6. Area in user study 2……………………………………………..…….……32

Figure 7. Map operations showing one line for each open

scenario for Study 2 for one participant….………………………33

www.manaraa.com

iv

LIST OF TABLES

 Page

Table 1. The map operations that we focus on and their symbols.……..13

Table 2. The number of scenarios (out of 170) in the guided

data set that contain pan patterns of n=2 and

n=3, respectively…………………………………………………………..…….15

Table 3. The number of 17 participants in the guided data set that

contain pan patterns of n = 2 and 3, respectively…………………..15

Table 4. An example of user input stream. Each line is a scenario

finished by a participant………………………………………….…………….16

Table 5. Interface of user study 2………………………………………………….……..16

Table 6. Map operations showing one line for each open scenario for

Study 2 for one participant………………………………………………..…..17

Table 7. The number of operations after a pan pattern is

encountered and the number of scenarios that contains

one or more pan patterns in unguided data set………………..….17

Table 8. The number of scenarios in the guided data set that

contains reversal patterns………………………………………………...….18

Table 9. The number of 17 participants in the guided data

set whose input stream contains reversal patterns………..…….18

Table 10. The number of scenarios (out of 180) in the unguided

data set that contains reversal patterns of n=2

www.manaraa.com

v

and n=3, respectively………………………………………………………….19

Table 11. The number of 18 participants in the unguided data

set that contains reversal patterns of n = 2

and 3, respectively……………………………………………………………..19

Table 12. The number of operations after a pan pattern is

encountered and the number of scenarios that contains

one or more pan patterns. This is in guided data set…………..20

Table 13. The number of operations after a pan pattern is

encountered and the number of scenarios that

contains one or more pan patterns. This is in unguided

data set……………………………………………………………………………...26

Table 14. An example of Kgram(3,50)…………………………………………………..21

Table 15. The output of Kgram(2,130)………………………………………………….22

Table 16. The strings we finally choose to use as Pattern 3…………………..23

Table 17. Number of scenarios in the guided data set that

contains the consecutive patterns………………………..…………….24

Table 18. Number of scenarios in the unguided data set that

contains the consecutive patterns……………………………..……….24

Table 19. The number of 17 participants in the guided data

set that contains consecutive patterns of n = 2

and 3, respectively………………………………………….………………….25

www.manaraa.com

vi

Table 20. The number of 18 participants in the unguided data set that

contains consecutive patterns of n = 2

and 3, respectively…………………………….……………………………….25

Table 21. The number of operations after a consecutive

pattern is encountered and the number of

scenarios that contains one or more consecutive

patterns. This is in guided data set………………………………….….25

Table 22. The number of operations after a consecutive

pattern is encountered and the number of

scenarios that contains one or more consecutive

patterns. This is in unguided data set………………………………….26

Table 23. Number of scenarios in the guided data set that

contains the consecutive patterns…………….……………..…………26

Table 24. Number of scenarios in the unguided data set that

contains the consecutive patterns………………………………………26

Table 25. Number of scenarios in the guided data set that

contains the order patterns………………………………………………..27

Table 26. Number of scenarios in the unguided data set that

contains the order patterns………………………………………………..27

Table 27. Number of map operations/impacted lines after

encountering a reversal or a pan count pattern for

the VR treatment when n=2 and 3………………………………………33

www.manaraa.com

vii

Table 28. Number of map operations/impacted lines after

encountering a reversal or a pan count pattern

for the real treatment when n=2 and 3……………….………………33

Table 29. Number of map operations/impacted lines after

encountering a reversal or a pan count pattern

for the complete dataset when n=2 and ……………………..…….33

www.manaraa.com

viii

ABSTRACT

 As mobile devices have become more and more popular, we are seeing more

location-based applications on handheld devices. Since the screen size of a handheld

device is very limited, using a map on such kind of devices can be quite difficult. To

make these applications easier to use, we want to use a situation model to provide

user a better service. In this paper, we analyze user map operations and try to

identify some useful patterns that have the potential to result in a significant saving

of some unnecessary user operations when used in a situation-based system. Two

user studies which are quite different are involved in this research. One is used to

understand patterns and another one is used for validation. The result shows that

the patterns identified in first user study are still valid in the second user study.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

As mobile devices have become more and more popular, we are seeing more

location-based applications on handheld devices. Since many of these devices have

screens with a very limited size, maps in these applications can be difficult to work

with. To make the existing location-based applications easier to use, we build on

Ming’s situation model [8], which has the potential to improve user’s ability to deal

with map operations in this environment.

Our current research focuses on understanding the difficulties when a user uses

location-based software on a handheld device. We are interested in finding out when

a map user is in trouble by identifying map operation patterns. To look at this

question, we have analyzed the results of a user study our group did in 2012 and

validated our results with a second user study.

The main contribution of this paper is that we were able to identify a set count

patterns and show these patterns have the potential to result in a significant saving

of unnecessary user map operations.

The remainder of the paper is organized as follows: Chapter 2 introduces some

related work. Chapter 3 briefly reviews Ming’s situation model. Chapter 4 briefly

describes the first user study and the count pattern we discovered. Chapter 5 is the

result of our evaluation. Chapter 6 provides a discussion of the result. Chapter 7 is a

validation or our result. Finally we have conclusions and future work in Chapter 8.

www.manaraa.com

2

CHAPTER 2. RELATED WORK

To make an application easier to use, software developers try to guess user’s

intention by which we can provide a better service to the user. So a very important

question we need to answer is: “what the user want?” We try to find a way to know

what the user want when a user using a location-based application. Adaptive systems

focus on analyzing these types of questions.

The effectiveness of adaptive interfaces depends on the quality of the algorithms

that predict user preferences/differences. Benyon [17] said the development of

such an algorithm can be based on careful analysis of the user

preference/differences space. Langley [18] and Billsus [19] said it can be based on

machine learning algorithms. Tsandilas and Shraefel [20] have examined the

accuracy of algorithms for predicting user performance and satisfaction. Nguyen and

Sobecki [21] think managing the results of predicting user preferences/differences

can be built into the interface software or managed as user/interface profiles.

Variations of the user interface itself can consist of different ways of providing

the software’s functionality and/or different representation formats for

instructions/data presented on the screen. Shneiderman [22] has examined the

effectiveness of using dynamic menus as a means of simplifying the complexity of

using a menu. Benyon [23] investigated the use of different interfaces based on

functionality for querying databases. His interface supported both a command line

interface and a menu-driven interface. By understanding a user’s level of spatial

ability, his system presented the user with the interface format best suited to his/her

abilities. The result was that users with high spatial ability had higher performance

when presented with the command line format, and users with low spatial ability

performed better when given the menu format.

Viano et al. [24] is an example of an adaptive interface that focuses on changing

what users see. They developed an adaptive process controller interface that takes

into account the state of the process and the state of the user. Under normal

conditions (user and process are operating at normal levels) the interface presents

the user with the normal amount of information. As either the user or the process

show signs of stress, the system adjusts the information the operator sees.

A new approach to adaptive systems is adaptive systems that look at the use of

situations. Findlater et al. [4] have compared adaptive to adaptable and static menus.

Gajos et al. [5] have looked at the design space of adaptive GUIs. Shankar et al. [12]

have explored adaptive user interfaces from a context point of view. But as far as we

know, there is no work about using situation based system directly into

location-based software.

www.manaraa.com

3

Ming [8,9] have looked at situation-based systems in the context of user

intentions. We will have a quick review in Chapter 3 to introduce Ming’s situation

model.

Bratman [2] thinks the user intention is the mental states that can motivate

user’s action. Sheer [13] provides another view that he thinks intentions is a course

of actions. In his research he tries to explain we could capture one’s intention by

analyzing his action sequence. This approach is very close to our goal that we try to

use situation based system to understand one’s intention.

www.manaraa.com

4

CHAPTER 3. SITUATION MODEL

In Ming [8], a situation is defined as having three parts: a set of user actions (a

pattern), system context, and service. (i.e. a situation S = (pattern, context, services).)

Based on Ming’s definition, we will provide a more detailed look at the use of

situations in location-based software.

A “Pattern” is a set of characteristic user operations from which we can guess

the user’s mind, status, or intention during his interaction with system. It could be

some unusual operation, count of the operations, a specific series of actions, or even

the distinctive time interval between some user actions. A “Pattern” is the

information that we can get from users and by analyzing it we can get a better idea

of the user’s needs. In location-based software, a pattern consists of some specific or

meaningful map operations.

The “Context” means the environment that the user interacting with. It contains

the user’s current state in the system, the function that the system provided to the

user at this state, the data around these functions, and the potential goal that user

may want to reach. User’s operations are done “in” the “Context” to meet some

potential goals that the “Context” provided. Some of these user operations may be

picked out as “Patterns” for that “Context”. In a location-based application, the

context could be something like a map interface which the user is working with.

A “Service” is the way that the system responds to help the user. “Service” is a

kind of feedback which will make the interaction between user and system much

easier. It may be some advice or help message or even some automatic operation

that can help user navigate the “Context”. A “Service” will change when there are

different “Pattern” and “Context” values. In a location-based application, we could

simply reset the map as a simple example of a service. Other potential services might

make use of the pattern to change the user interface to make the map easier to

manipulate.

All of this together forms the “Situation”. A Situation-based map system aims at

making the system more user-friendly by detecting different “Patterns” of map

operations based one “Context” then gives a proper “Service”.

In this paper, we are focus on “Pattern”. Several kinds of “count patterns” will be

introduced in next chapter. “Count Patterns” are the patterns that make use of a

count of operations, which may imply extra map operations in the result. Our study

shows that if the patterns could be found early enough in the sequences of map

operations, it has the potential to result in significant savings in terms of the number

of map operations performed.

www.manaraa.com

5

CHAPTER 4. METHODS

4.1 User Study

The key point of this work is to determine useful patterns for the situation model.

To find potential patterns, we use the data from a user study our group did in Spatial

Ability and Map-Based Software Applications [3]. In the user study, 35 people from

community were asked to use location-based software to perform address

verification tasks. The address verification tasks require a field worker to locate the

address in the real world (if it exists) and check the map to make sure that the map

matches the real world. The software task requires that the field worker should be

able to find the target address on the map. In case that the address doesn’t exist in

the real world, the user finds the location where the address should be on the map

and makes sure the map doesn’t include the address. The software used in the study

provides a photo with the ground situation and a map of housing units on the ground

with the corresponding information. A housing unit on the map will be represented

as a spot with its house number assigned to it. There are several possible results: 1)

the ground situation is correctly reflected in the map and no further action is needed;

2) there is an error of commission on the map and a delete action is required to

remove a spot on the map; 3) there is an error of omission on the map and an insert

action is needed to add the spot to the map; 4) there is an error of housing unit

location and the spot on the map need to relocated. We call each task of completing

the verification of one address a scenario.

Figure 1 shows a snapshot of the software for both the guided and unguided

versions. The software has a map and several buttons. This experiment has 10

verification scenarios and each of the scenarios will give a photo of the real world for

each side of the street and ask the user to evaluate whether the location of a specific

address on the ground is properly represented on the map. To successfully finish the

task for each scenario, user need to do following steps in sequence: 1) find the

address on the ground (i.e., in the photos presented to the subject), 2) locate the

address on the map, 3) answer a question posed by the software as to whether or

not the address was on the map, 4) if so, answer a question posed by the software as

to whether or not the address was in the correct location on the map, and 5) fix the

map if an error was identified

During the experiment, the user is asked to sit in front of two monitors that

showing the photo of two sides of the street (Figure 2). The motivation for using this

approach was to maximizing the user’s attention on the software. In particular this

setup removed the navigation associated with address verification. The software will

record a log file containing the following information: the time it takes the user to

finish each task; the number of scenario involved; user actions. Two treatments,

“guided” and “unguided”, are used in the experiment. The “guided” interface has

some tips on the top of the interface to indicate the general information of next step

www.manaraa.com

6

to finish the task. There are no tips on the top if it is “unguided”. 17 of 35 people in

the experiment are treated as guided and 18 of 35 people are treated as unguided.

The map will be reset when a scenario is completed.

In this research, we focus on the user actions in the log file. The software will

record all the user actions when a user using it. The actions includes: (1) User does

any operations on the map, such as pan, zoom, or click on the map. (2) User clicks

any other buttons to do submit, add, reset, or delete. When a user finish the

experiment, the software will output a log file which records all the operations the

user did during the experiment. Figure 3 is an example of the content of a log file.

a) Guided user interface.

Figure 1. The interface of the user study.

www.manaraa.com

7

Figure 1. a) Guided user interface. (continued)

www.manaraa.com

8

b) Unguided user interface.

Figure 1. The interface of the user study. (continued)

Figure 2. The experiment of the user study.

www.manaraa.com

9

Figure 3. An example of the output file.

www.manaraa.com

10

4.2 Patterns

To finish the task given by the software described in the previous section, several

operations, such as: zoom in, zoom out (either click zoom or use the rolling bar), pan

left, pan right, pan up, pan down, click and reset, are needed. Generally speaking,

our study is based on the count of 1) these operations; and 2) combinations of these

operations. A combination is a string linked by several operations. For example, how

many pan left a user used to finish a task? How many pan right after a pan left

operation a user used to finish a task? etc.

Our study focuses on some characteristic combinations which we call “count

patterns”. A count pattern, denoted as n(list of one/or a series of user operation), is

detected if the operations in the list appears n times in a user input to finish a

scenario. During the study, we find that some specific count patterns are meaningful

because they have the potential to save extra user operations after the pattern is

detected. That means the operations after some specific patterns have a great

chance to include unnecessary operations. According to the situation model, if we

can find these “pattern” early enough and invoke the “service” before users do the

extra work, it would be easier for users to finish their task.

We have found several meaningful patterns in our study. In this research, we will

focus on four of these pattern types which we found to have significant potential for

savings:

Pattern 1: n(A) A is on or more pan operations of the same type.

Pattern 2: n(A) n(B), B is the reversal of A.

Pattern 3: n(A B)

Pattern 4: n(A) (d) m(B), the n occurrence of A are strictly before B.

In these four patterns, “A” and “B” mean a specific operation or combination of

operations which will be counted. The “n” and “m” stands for the times the

operation/combination exists. “d” means the operations or segment that we do not

care what it is but it does separate the counts. Note that if n(A) is not separate from

n(B), it would be the same as n(A)n(B). An example of 2(AB) for Pattern 3 could be:

ABAB. An example of 2(A)3(B) could be AABBB. An example of (A)(d)(B) could be an

“A” followed by a operation/combination that we do not care what it is and then end

with a “B”.

Pattern 1 is a pattern that only contains pans of the same type. In our research

with this experiment, we find the most used operations are pans (pan left, pan right,

pan up, pan down). There are 1374 pan operations in an overall 2426 operations of

guided data and 1503 pan operations in an overall 2513 operations of unguided data.

Since pans take more than half part of the total, we pay more attention on it.

www.manaraa.com

11

Pattern 2 is a pattern with n occurrences of reversal operations. A couple of

reversal operations mean that one operation is the reverse of another one. For

example, “pan left” and “pan right” form a reversal; “zoom in” and “zoom out” form

a reversal. We call pattern 2 “reversal pattern”. In a reversal pattern, we count the

number of occurrences of “A” and the reversal of “A”. Since during the counts there

are no differences between n(A)n(B) (B is the reversal of A) and n(B)n(A), so we

considered n(B)n(A)=n(A)n(B).

Pattern 3 is a pattern with several repeated consecutive operations. We call it

“consecutive pattern”. In consecutive pattern, A and B should be conscutive together

and there are no other operations between them.

 Pattern 4 is related to Pattern 2 in the sense that we are looking for counts of

pattern A and B, but in Pattern 4 the counts of A, for example, n(A) has to appear

before the don’t cares and before we start counting the pattern B.

Based on these four kinds of pattern, we did a lot of analysis based on the data

comes from the user study described in Section 4.1. The result will be shown in the

next section. We design several methods to analyze the data. Our goal is to find a

way to make the application more user-friendly based on the patterns we have found.

In particular, we are interested in identifying patterns that occur early in the work on

an address that appear cause the user to get lost on the map. In the next section, we

will also show the result of our analyzing and further explain what can be improved

in location-based software by using the situation conception.

www.manaraa.com

12

CHAPTER 5. RESULTS

5.1 Overview

In this section, results from the analysis of the experiment descripted in the last

chapter will be shown. From these results, we can further understand the

importance of the patterns for Situations. It is possible to potentially “save” some

unnecessary operations by using these patterns. The count patterns described in

Chapter 3 will be further discussed in this section by showing the specific examples

and doing analysis. The general idea is that we are trying to find some “interesting”

patterns which may lead to potential savings by counting the number of different

sets of operations. The goal of this research is to use the user study to identify

interesting patterns and check whether these can lead to some potential savings. If

so, then it means we can use these patterns in a situation system as triggers to help

the users. We will use another user study to validate our result in validation chapter.

5.2 Transform the Data

As we mentioned before, the operations performed by a participant in the user

study were recorded by the software as shown in Figure 3. Since we need to do

analysis on the map operations, we need to convert the log file into the map

operations for each address being verified (scenario). Then we can automate the

calculation to find the sequences and counts that may lead us to our expected

conclusion. We will do following steps:

Step 1: output the important user operations in the logs and generate a file of

user’s input stream. The log file shown in Figure 3 has a lot of operations that are of

less value in our research. For example, the user moving his mouse and clicking some

meaningless region, this is an operation with less value. In this research, we only

focus on the map operations. The map operations are listed in Table 1. In this step,

we output the tokens for operations in Table 1 to a file. In this file, each line is a set

of operations recorded from one single scenario. At the end of a scenario, the next

operation will be output to a new line.

Step 2: Based on the file generated in Step 1, replace each of the tokens with

one-single-length character from Table1. The map of operations-symbols are shown

in Table 1. For example, a “pan left” operation will be replaced by a character “<”, a

“pan right” operation will be replaced by a “>” as its symbol. We call each line a “user

input stream”. Figure 4 provides the results for 10 scenarios by one user. By doing

this, the user input stream can be seen to represent a set of map operations for one

scenario.

www.manaraa.com

13

Step 3: we use a java program to count the operations in user input streams and

try to figure out if there are some meaningful patterns of the form introduced in

Chapter 3. As mentioned before, we have 17 people treated as guided and 18 people

treated as unguided. So the analysis will also be divided into two group, one is

guided and another is unguided. We have 3 programs that were implemented in

different way to count the result. For Pattern 1 and Pattern 2, since they are simple

counting work, we just use the program to count the times the operation exists. For

Pattern 3, the count program will have a pattern as input parameter. The program

will first read the file line by line, and identify how many patterns included in each

line. The program also has an input parameter “n” which is an integer. The program

will count how many operations remain after the “n” required patterns are detected

in this line. The program for Pattern 4 is similar to the program of Pattern 3. The only

two differences are: 1) the program of Pattern 4 has two input parameters, A and B,

both are combination of operations. 2) the program of Pattern 4 enforces the order

very strictly. It will consider a valid count if and only if A happens before B. This is the

general idea of the count program. The more detailed information and result will be

shown in Section 5.3, User Study Result.

Table 1. The map operations that we focus on and their symbols.

Pan left <

Pan right >

Pan up A

Pan down V

Click X

Zoom in +

Zoom out -

Reset R

One level zoom in using the scroll bar B

Two level zoom in using the scroll bar C

One level zoom out using the scroll bar B

Two level zoom out using the scroll bar C

www.manaraa.com

14

+x+>+x+++>>>><<x+x-

++A<>>>>+<>++

++ V<>>>

++>AAV

+x+><

+x+VAAAAVVVVV>>++x+<<VVV

<<+VV<>>>>+<>++--+x+x

+x+V>A

++A

+x+-+xVA

Figure 4. An example of user input stream. Each line is a scenario finished by a

participant.

5.3 Result

In this section, we will show the results of our work using the first user study.

The data is divided to two pieces based on whether or not the participants were

guided or not, since the interface of guided and unguided treatment are different.

Since we want to know if the situation system can really help in improving the

location-based application, we should check if the location-based application that

could be improved. The idea is we want to find some patterns which may indicate

that some extra user operations are being performed. If we can find patterns after

which there exist unnecessary user operations, it means the situation system can

intervene and help the user.

In this research, our goal is to identify meaningful patterns and try to find out if

there are some potential savings after a pattern is encountered. For each scenario,

there is an optimal input stream to finish the task. In the user study, each scenario

was finished by several different users. From these users’ input stream, we pick the

shortest one as the optimal. An optimal input stream can stand for an actual need for

a user to finish a task of a scenario. In a user input stream, if there remains a string

which length is greater than the optimal input after a pattern is detected, we

consider this input stream contains some potential saving. Generally speaking, in this

research we focus on the remaining part in each input stream after a pattern is

encountered. If the remaining part is very long and even longer than the actual need

to finish the task (the optimal), it means in this input stream the user did a lot of

unnecessary operations. In our research, we call this “remaining part” as “potential

saving”.

By analyzing the input stream we get from the user study described in Chapter 3,

we can successfully identify some patterns that lead to potential savings. We divide

these patterns into four categories as defined in Chapter 3.

www.manaraa.com

15

Pattern 1: n(A)

In this pattern, A is a pan operation. During our study, we found there were 1503

pan operations in unguided data set whose total operations are 2513. That means

there are 59.8% operations are pans. Similarly, there are 1374 pan operations,

account for about 58.8%, in the guided data set with 2336 operations as total. Pan

operations take more than half of the total. So we try to do some counts on pans and

identify if there are some patterns with only pans that have the potential to save

extraneous operations.

Table 2. The number of scenarios (out of 170) in the guided data set that contain pan

patterns of n=2 and n=3, respectively.

Pan Count

Patterns

Count

n=2

Percentage

n=2

Count

n=3

Percentage

n=3

n(>) 52 30.6% 30 17.6%

n(<) 52 30.6% 31 18.2%

n(A) 72 42.4% 45 26.5%

n(V) 65 38.2% 39 28.8%

Table 3. The number of 17 participants in the guided data set that contain pan

patterns of n = 2 and 3, respectively.

Pan

Count

Patterns

Count

n = 2

Percentage

n = 3

Count

n=3

Percentage

n = 3

n(>) 17 100% 13 76.5%

n(<) 15 88.2% 13 76.5%

n(A) 17 100% 14 82.4%

n(V) 17 100% 15 88.2%

www.manaraa.com

16

Table 2 shows the number of scenarios (out of the 170) that contains at least

two or three (n=2 and n=3) pan operations. The column “Count” shows the number

of scenarios have pan patterns detected, and the column “Percentage” shows the

percentage it takes in overall. Table 3 shows the number of participants whose input

stream contains these patterns. Similarly, the “Count column” shows the number

while the “Average” column shows the percentage. Both Table 2 and Table 3 are

counted with the guided data set.

Table 4. The number of scenarios (out of 180) in the unguided data set that contain

pan patterns of n=2 and n=3, respectively.

Pan

Count

Patterns

Count

n = 2

Percentage

n = 3

Count

n=3

Percentage

n = 3

n(>) 66 36.7% 45 25.0%

n(<) 70 38.9% 48 26.7%

n(A) 82 45.6% 56 31.1%

n(V) 68 37.8% 51 28.3%

Table 5. The number of 18 participants in the unguided data set that contain pan

patterns of n = 2 and 3, respectively.

Pan

Count

Patterns

Count

n = 2

Percentage

n = 2

Count

n=3

Percentage

n = 3

n(>) 17 100% 13 76.5%

n(<) 15 88.2% 13 76.5%

n(A) 17 100% 14 82.4%

n(V) 17 100% 15 88.2%

www.manaraa.com

17

Table 4 and Table 5 are the same results for unguided data set. Table 4 shows

how much percentage of scenarios that contains listed pan patterns. Table 5 shows

how much percentage of users who has used this pattern in their input stream.

Table 6. The number of operations after a pan pattern is encountered and the

number of scenarios that contains one or more pan patterns in guided data set.

N Operations After Pattern Scenario impacted

out of 170

2 1130 104

3 886 75

Table 7. The number of operations after a pan pattern is encountered and the

number of scenarios that contains one or more pan patterns in unguided data set.

N Operations After Pattern Scenario impacted

out of 180

2 1536 111

3 1239 82

Table 6 and Table 7 show the total number of map operations remaining in

scenarios after a pan pattern has been detected and the number of scenarios that

contains one or more of the pan patterns in the guided and unguided data set,

respectively. Note that a pan pattern is the pattern we talked above who has a form

like n(A) where “A” is a pan operation.

Pattern 2: n(A)n(B)

In Pattern 2, B is a reversal of A. The reversal operation is an obvious type of

pattern that we should pay attention to. Since two reverse operations will offset each

other, they don’t get the user closer to his goal when using a location-based

application. More important, we find instances where such reversals, especially, with

zooms that can get the user lost. An example is a zoom reversal without centering. So

we count the reversal pairs to find if there are some proper patterns that tend to

generate extraneous operations.

www.manaraa.com

18

Table 8. The number of scenarios in the guided data set that contains reversal

patterns.

Reversals

Patterns

Count

n = 2

Percentage

n = 2

Count

n=3

Percentage

n = 3

n(z+)n(z-) 19 11.2% 10 5.9%

n(>)n(<) 36 21.2% 20 11.8%

n(A)n(V) 55 32.4% 36 21.2%

Table 9. The number of 17 participants in the guided data set whose input stream

contains reversal patterns.

Reversals

Patterns

Count

n = 2

Percentage

n = 2

Count

n=3

Percentage

n = 3

n(z+)n(z-) 13 76.5% 9 52.9%

n(>)n(<) 15 88.2% 9 52.9%

n(A)n(V) 17 100% 13 76.5%

Table 8 shows the number of guided scenarios (out of 170) that contains at least

two or three (n=2 and n=3) reversal operations. The column “Count” shows the

number of scenarios has reversal patterns detected, and the column “Percentage”

shows the percentage it takes in overall. Table 9 shows the number of participants

whose input stream contains these patterns. Similarly, the “Count column” shows the

number while the “Percentage” column shows the percentage. Both Table 8 and

Table 9 are generated with the guided data set.

www.manaraa.com

19

Table 10. The number of scenarios (out of 180) in the unguided data set that

contains reversal patterns of n=2 and n=3, respectively.

Pan

Count

Patterns

Count

n = 2

Percentage

n = 2

Count

n=3

Percentage

n = 3

n(z+)n(z-) 33 18.3% 19 10.6%

n(>)n(<) 53 29.4% 33 18.3%

n(A)n(V) 58 32.2% 44 24.4%

Table 11. The number of 18 participants in the unguided data set that contains

reversal patterns of n = 2 and 3, respectively.

Pan

Count

Patterns

Count

n = 2

Percentage

n = 2

Count

n=3

Percentage

n = 3

n(z+)n(z-) 13 72.2% 10 55.6%

n(>)n(<) 16 88.9% 12 66.7%

n(A)n(V) 16 88.9% 14 77.8%

Table 10 and Table 11 provide the same results for unguided data set. Table 10

shows the percentage of scenarios that contains listed pan patterns. Table 11 shows

the percentage of users who has used this pattern in their input stream.

www.manaraa.com

20

Table 12. The number of operations after a pan pattern is encountered and the

number of scenarios that contains one or more pan patterns. This is in guided data

set.

N Operations After Pattern Scenario impacted

out of 170

2 1130 104

3 886 75

Table 13. The number of operations after a pan pattern is encountered and the

number of scenarios that contains one or more pan patterns. This is in unguided data

set.

N Operations After Pattern Scenario impacted

out of 180

2 1167 84

3 863 59

Table 12 and Table 13 shows the number of map operations after a reversal

pattern is detected and the number of scenarios that contains one or more this kind

of pattern for n=2 or 3. Note that a reversal pattern is the pattern we talked above

who has a form like n(A)(d)n(B) where “A” is a reversal of “B”.

Pattern 3: n(A B) or n(ABC)

In this pattern, “A” and “B” and “C” are consecutive map operations. To find this

kind of pattern, we use a data mining approach to pick some strings as candidates of

“AB” or “ABC”. We designed a function Kgram(length,times) to pick out the string

combinations we want. This function has two input parameter: one is the length of

the target strings and another one is the times the target string exists. The program

will read the data file first and call this function to require some outputs. The Kgram

function will generate a list of string combinations that have a length equals to the

“length” in the input parameter and whose existing frequncy is greater than the

“times” parameter. The program will output a list of these strings and we call those

strings candidates. Table 14 is a output list generated by using Kgram(3,50). So it lists

www.manaraa.com

21

all the string combinations in the result file whose length is equal to 3 and who exists

more than 50 times. The first column is the candidate strings. The second column is

the times it existed overall. The third column means the percentage of lines

(scenarios) that contained at least one target string combinations. It is calculated by

the lines contains in the target strings divided by the total lines. Table 15 is the same

output of Kgram(2,140). During our test, we find that the strings with length 2 or 3

has a good existing rate so we decide to choose 2 and 3 as the first parameter in

Kgram function. To choose the second parameter in Kgram function, we test a lot and

find when the value is 50 and 140 respectively, the output would not be too big or

too small. The strings that have the highest existing rate will be listed in the output

files.

Table 14. An example of Kgram(3, 50).

Key Strings Overall Percentage (Line)

+x+ 236 50.57%

x+x 106 24.29%

+xV 50 11.14%

VAA 69 16.57%

AVV 59 14.0%

VVV 110 15.71%

VVA 65 16.0%

AAA 81 13.71%

AAV 65 15.43%

www.manaraa.com

22

Table 15. The output of Kgram(2,130).

Key Strings Overall Percentage (Line)

+x 446 62.29%

x+ 287 52.29%

+> 98 23.71%

+A 89 22.0%

<> 110 22.86%

<+ 101 21.71%

+V 100 21.71%

VV 233 29.14%

+< 107 23.43%

VA 156 26.86%

AA 210 30.29%

AV 119 25.71%

From Table 14, we can see the candidates. But before we do the count, we have

to remove some of them since they may not be the strings we really need. For each

scenario, there should be an optimal solution to satisfy the task. We consider the

shortest input stream among all participants that can finish the task in the scenario

as the optimal one. In Table 14, it is shown that string “+x+” and “x+x” has the

highest existing rate. However, we find “+x+” and “x+x” is contained in almost every

optimal input and they are actually necessary to finish the most of the scenario tasks.

So we should remove them from the candidates. In Table 15, we choose to remove

“+x” and “x+” for the same reason. Since we have already counted strings like”<>”,

“VA”, and “AV” in the work of Pattern 2, so they should also be removed. Finally, we

pick 4 strings respectively from Table 14 and Table 15 that have the highest existing

rate as our candidates for Pattern 3. The final result is shown in Table 16.

www.manaraa.com

23

Table 16. The strings we finally choose to use as Pattern 3.

Key Strings Overall Percentage (Line)

VV 233 29.14%

AA 210 30.29%

>> 134 19.43%

<< 140 19.71%

Key Strings Overall Percentage (Line)

VAA 69 16.57%

VVV 110 15.71%

VVA 65 16.0%

AAV 65 15.43%

Now, let’s see the count result of Pattern 3. Table 17 is the count result of

Pattern 3 which shows the number of scenarios in the guided data set that contains

the consecutive patterns. Table 18 shows the same result for unguided data set.

Table 19 is the number of 17 participants in the guided data set that contains

consecutive patterns of n = 2 and 3. Table 20 is the same result for unguided data set.

Table 21 and Table 22 are the numbers of operations after consecutive patterns has

been encountered when n= 2 and 3 for guided and unguided data set respectively.

www.manaraa.com

24

Table 17. Number of scenarios in the guided data set that contains the consecutive

patterns.

Consecutive

Patterns

Count

n = 2

Percentage

n = 2

Count

n=3

Percentage

n = 3

n(>>) 12 7.1% 4 2.6%

n(<<) 15 8.8% 7 4.1%

n(AA) 24 14.1% 11 6.5%

n(VV) 21 12.4% 11 6.5%

Table 18. Number of scenarios in the unguided data set that contains the consecutive

patterns.

Consecutive

Patterns

Count

n = 2

Percentage

n = 2

Count

n=3

Percentage

n = 3

n(>>) 14 8.2% 9 5.3%

n(<<) 15 8.8% 8 4.7%

n(AA) 21 12.4% 9 5.3%

n(VV) 24 14.1% 13 7.7%

www.manaraa.com

25

Table 19. The number of 17 participants in the guided data set that contains

consecutive patterns of n = 2 and 3, respectively.

Reversals

Patterns

Count

n = 2

Percentage

n = 2

Count

n=3

Percentage

n = 3

n(>>) 7 41.5% 2 11.8%

n(<<) 7 41.5% 5 29.4%

n(AA) 10 58.8% 7 41.5%

n(VV) 10 58.8% 8 47.1%

Table 20. The number of 18 participants in the unguided data set that contains

consecutive patterns of n = 2 and 3, respectively.

Reversals

Patterns

Count

n = 2

Percentage

n = 2

Count

n=3

Percentage

n = 3

n(>>) 10 55.6% 7 38.9%

n(<<) 9 50.0% 6 33.3%

n(AA) 11 61.1% 6 33.3%

n(VV) 14 77.8% 8 44.4%

Table 21. The number of operations after a consecutive pattern is encountered and

the number of scenarios that contains one or more consecutive patterns. This is in

guided data set.

N Operations After Pattern Scenario impacted

out of 170

2 648 38

3 395 21

www.manaraa.com

26

Table 22. The number of operations after a consecutive pattern is encountered and

the number of scenarios that contains one or more consecutive patterns. This is in

unguided data set.

N Operations After Pattern Scenario impacted

out of 180

2 735 46

3 482 24

Table 23. Number of scenarios in the guided data set that contains the consecutive

patterns.

Consecutive

Patterns

Count

n = 2

Percentage

n = 2

Count

n=3

Percentage

n = 3

n(VAA) 1 0.59% 0 0%

n(VVV) 10 5.88% 6 3.53%

n(VVA) 2 1.18% 0 0%

n(AAV) 6 3.53% 1 0.59%

Table 24. Number of scenarios in the unguided data set that contains the consecutive

patterns.

Consecutive

Patterns

Count

n = 2

Percentage

n = 2

Count

n=3

Percentage

n = 3

n(VAA) 4 2.22% 2 1.11%

n(VVV) 12 6.67% 6 3.33%

n(VVA) 5 2.78% 1 0.56%

n(AAV) 2 1.11% 0 0%

www.manaraa.com

27

Pattern 4: n(A) (d) n(B)

In Pattern 4, A and B could be either single user operation or a combination of

some operations. Similar to Pattern 3, we have to find some candidates of A and B. In

this part, we will use the output result that we generate for Pattern 3. Since we don’t

want to do some meaningful counts we decided to use the candidates from Pattern 3

as the candidates of A and B in Pattern 4. So we will try to find the combinations

which consist with the candidates in Pattern 3 as the candidates of Pattern 4. Note

that a very important difference between Pattern 3 and Pattern 4 is that Pattern 3

only counts but Pattern 4 will take some care on the order of the strings. That means,

a pattern with n(A) (d) m(B) means, the m occurrences of B should strictly happens

after the n occurrences of A. This is very important. Since when the length of A and B

becomes to 2 and 3, this kind of patterns happens very rarely, so we can only find

four instance of this pattern which can be detected in both guided and unguided

dataset. Table 25 and Table 26 show the count result of the order patterns detected

in the guided data set and unguided data set when n=2, m=2 and n=3, m=3

respectively.

Table 25. Number of scenarios in the guided data set that contains the order

patterns.

Order Patterns Count

n=2,

m=2

Percentage

n=2, m=2

Count

n=3,

m=3

Percentage

n=3, m=3

n(AA)(d)n(VVV) 4 2.35% 4 2.35%

n(VVV)(d)n(AA) 8 4.71% 1 0.59%

n(AA)(d)n(VV) 6 3.53% 4 2.35%

n(VV)(d)n(AA) 9 5.23% 5 2.94%

Table 26. Number of scenarios in the unguided data set that contains the order

patterns.

Order Patterns Count

n=2,

m=2

Percentage

n=2, m=2

Count

n=3,

m=3

Percentage

n=3, m=3

n(AA)(d)n(VVV) 5 2.78% 4 2.22%

n(VVV)(d)n(AA) 5 2.78% 2 1.11%

n(AA)(d)n(VV) 9 5.0% 5 2.78%

n(VV)(d)n(AA) 7 3.89% 4 2.22%

www.manaraa.com

28

CHAPTER 6. DISCUSSION

In this chapter, we will have a discussion about the results we gave in Chapter 5.

The goal of this study was to find patterns and show that by identifying these

patterns have a possibility to intervene and save some unnecessary operations. From

our research results, we find that some of the map operations used has the potential

to cause a user to get lost on the map. They are not necessary in the optimal inputs

but they tend to lead to a lot of user operations after they occur in a scenario.

Our expectation is that the situation service triggered by the patterns would give

the user an opportunity to complete the task more efficiently. That is, we believe

these patterns can be detected when the user is doing some unnecessary work. If

operations exist in every optimal input stream, the pattern cannot be a good pattern,

because it is necessary to complete the task. If there are very few operations remain

after a pattern is encountered, it unlikely to be a good pattern. In addition, if a string

exists very rarely in the user input stream, it is unlikely to be a good pattern. The

good patterns we need to find should exist often in the user inputs, but they are not

the necessary in the optimal solution. They should typically have quite lot operations

after they are detected to finish the address verification.

Since this research only focuses on looking for potential situation patterns, we

are mainly concerned finding potential savings. We cannot say if these operations are

necessary or not to finish the task. What we only know is if the remaining part after a

pattern in encountered is much longer than the optimal inputs, there is a possibility

to improve it. For example, by using Ming’s [8] situation environment model, the

software can provide some proper service based on our patterns to let user know he

may have some trouble in using the software. Our current work is to identify the

meaningful patterns that can be used in a situation model to make the

location-based software easier to use.

From the count results described in the last chapter, we can see the patterns we

have found can match the all three conditions for good patterns we talked above. For

Pattern 1 and Pattern 2, all of them are not necessarily part in the optimal inputs.

From Tables 2, 4, 8, and 10, we know that the pan patterns and reversal patterns

we’ve found exist very frequently in the user’s input stream. They exist in 10% to 30%

of the total scenarios. Note this rate is just right because too high of rate may reflect

the operations are necessary to finish the task or are very common operations to use

to finish the task. Too low rate may reflect the fact that these operations exist very

rarely so they has less value. From Tables 3, 5, 9, and 11, we can see that almost all

the participants had been used these patterns in their input stream (At least 55.6%,

about 70% as average). This is a very high rate. In Tables 6, 7, 12, and 13, we can see

that there are a lot of operations after a pattern is encountered. About 10.8 map

operations per impacted scenario happen after a pattern is detected in guided

www.manaraa.com

29

treatment. In the unguided treatment it happens even more. About 13.2 map

operations per scenario impacted. Since the optimal input can be finished in about 4

to 8 operations, it means there are quite a lot of additional operations appears after

the pattern. If we can find a proper service there will be a possibility to greatly

reduce the user’s frustration. So we can say the reversal patterns and the pan

patterns we have found should be the good patterns at least in this location based

application we used in the user study.

For Patterns 3 and 4, there are some differences. The first thing is that since

Patterns 3 and 4 have a relatively bigger size (they contain 2 or 3 consecutive

operations as one single segment in our counting, such as in Pattern 3, a pattern is

counted as n(AAV), which is longer than a pattern in Pattern 1, such as n(>)), so it

obviously should have a relatively lower rate of existence. In Table 17 and Table 18,

we can see that for a consecutive pattern whose segment length is 2, it still has a

high existing rate. Each of them has an existing rate around 10% at n=2 and about 5%

when n=3. But when the length of a segment comes to 3, in Table 22 and Table 23 we

can see that some of the rate drops to 0. Consider the results about Pattern 1 and

Pattern 2, we can conclude that the length of the pattern may be determined by the

complexity of a task. Our count result also matches this point. Besides, in Table 21

and Table 22, we can see the consecutive pattern we have found in Pattern 3 leads to

a lot of operations when n= 2 and 3. In the guided data set, there are about 648

operations remains after a consecutive pattern is encountered when n=2, and 395

operations when n=3. For the unguided data set, there are about 735 operations

remains after a consecutive pattern is encountered when n=2, and 482 when n=3.

The number of potential saving is still very high. Since the potential saving is much

more than the optimal inputs, so we can conclude that these patterns we found in

Pattern 3, as consecutive patterns, are good patterns to be a trigger to call a

intervene. In Table 23 and Table 24, we can see that some of the pattern whose

length is 3 happen very rarely when n=2 or 3. Though they are detected many times

in the data set, but they are rarely detected more than one times in a single scenario.

For this kind of pattern, they are not as useful. For example, n(VVA) and n(VAA) are

not that meaningful in our result. On the other hand, the pattern n(VVV) often

happens repeatedly in a single scenario, 10 are detected when n=2 in guided data set

and 6 are detected when n=3. The numbers are even high in unguided data set. So

for this pattern, it appears to be a good pattern in a situation system.

For Pattern 4, we can see that though there are still some potential savings when

an instance of Pattern 4 is detected under n = 2 and 3. But we should note that it is

much less than the potential savings in Pattern 1 and 2, since there are less scenarios

that contain Pattern 4 when n =3. Even when n=2, the number is still very small.

From this, we know that this kind of pattern is quite specific or it is not that general.

When the application changes, we hardly able to find this pattern. But it is still useful

in this user study. Further evaluation should be done to check if it still works on other

types of location-based software.

www.manaraa.com

30

Another interesting thing has been found during our research in the counting

step, is that we find that for a person, who has input a pattern we identified in

Chapter 4, and has a great chance to input the same pattern in another scenario. And

for these people, they usually do many more operations than the task requires. For

example, a person who types pattern 2(AAV) in one of his task, usually types 2(AAV)

in the other scenarios as well. Furthermore, all of his inputs in which we can detect a

pattern, are much longer than the optimal one. So we think that if we find a person

whose input has a lot of patterns detected frequently, he may have some trouble

using the software and may be helped by intervention from the situation model.

From this, we can also say, our pattern is quite useful as a trigger for calling a service

in a situation system.

The following list is the pattern we have successfully identified in our research

and we consider them as good patterns (n is equal to 2 or 3):

Count Pan Patterns: n(<), n(>), n(A), n(V).

Count Reversal Patterns: n(<)n(>), n(A)n(V), n(Z+)n(Z-).

Count Consecutive Patterns: n(>>), n(<<),n(AA),n(VV),n(VVV).

Order Patterns: n(AA)(d)m(VVV), n(AA)(d)m(VV), n(VVV)(d)m(AA), n(AA)(d)m(VVV).

From our research, we find that Pattern 1 and Pattern 2 have more potential

savings than Pattern 3 and Pattern 4. The reason is that Pattern 3 and Pattern 4

happens very rarely when n become bigger and bigger. When n=2, there are still

some potential savings can be found in the inputs. But when they grow to 3, 4 or

even 5, the potential savings will quickly drop to a very low value. Since the goal of

this research is to find some valuable patterns in location based application, we

consider Pattern 1 and Pattern 2 are more valuable than Pattern 3 and Pattern 4.

Pattern 3 and Pattern 4 are more specific. But Pattern 1 and 2 are more general and

more flexible. Based on this point, to verify if pattern 1 and 2 are still valid in a very

different implementation of the address verification software, we will evaluate the

patterns in another implementation of the address verification task.

www.manaraa.com

31

CHAPTER 7. VALIDATION

In this chapter, we will describe another user study based on address verification,

let’s call it user study 2. We use user study 2 to validate the patterns we found in user

study 1. The location-based software used by user study 2 is totally different than the

one user study 1 used.

Thirty-one participants performed the address verification task for 6 addresses in

the second study. They are divided into two groups: the real group and the VR group.

The real group will navigate in a 3x4 block neighborhood of Ames, Iowa, and had to

navigate as well as perform the address verification on the software. The area is

shown in Figure 6. The VR group do the same thing but they will be in Iowa

University’s C6 (a fully immersive virtual reality environment) and use a virtual model

to simulate their navigation of the neighborhood. The detail of this user study can be

found in Batinov, et al [1].

A key difference between the two studies is that in user study 2, the participants

could choose the scenario they wanted to work on in any order. They could revisit

any scenario as well. Another difference between user study 1 and 2 is that after a

user finish a scenario in user study 2 the software would not reset to map. Figure 5

shows the interface of user study 2.

Figure 5. Interface of user study 2.

www.manaraa.com

32

Figure 6. Area in user study 2.

Figure 7 shows the map operations for one of the 31 participants in user study 2.

There are some new symbols added in this user study: JZ, KZ, LZ, MZ, NZ and PZ

indicate the selection of one of the six scenarios in this user study. Note that the user

data shown in Figure 7 illustrate that the user worked on some scenarios more than

once (e.g. NZ & JZ).

www.manaraa.com

33

JZ--A<V><AVV><>Ax

PZ<V<AAVV>cBxBV<V<>AA><><BV><<>V<>

MZ

PZ

MZV<>V<>A<<VA>b>--++>>><<-+V**

NZ<>>><<<<>>><A<<V>>>>*<><A<<V+-

KZ>>><<><>><<<A

NZ<>>-->-++-++--++<V---

LZxA<<>>V

NZ<<A

LZ<>-->>AA<<VVxAVA

JZ>V>>V

Figure 7. Map operations showing one line for each open scenario for Study 2 for one

participant.

Interestingly, the result shows the pan patterns and the reversal patterns will still

lead to a significant potential savings. The results are given in Tables 27,28, and 29.

Table 27. Number of map operations/impacted lines after encountering a reversal or

a pan count pattern for the VR treatment when n=2 and 3.

N pans reversals Both

2 997/88 834/67 1039/91

3 730/58 559/51 782/62

Table 28. Number of map operations/impacted lines after encountering a reversal or

a pan count pattern for the real treatment when n=2 and 3.

N pans reversals Both

2 610/65 515/57 664/73

3 405/45 298/36 460/51

Table 29. Number of map operations/impacted lines after encountering a reversal or

a pan count pattern for the complete dataset when n=2 and 3.

N pans reversals Both

2 1607/153 1350/124 1703/164

3 1135/103 857/87 1242/113

From Table 27, 28 and 29, we can see that in user study 2, there are 1607 and

1135 potential saved operations as total when n=2 and n=3 respectively. This means

our pattern 1 and pattern 2 still works in the software used by user study 2. That is a

very good result.

www.manaraa.com

34

CHAPTER 8. CONCLUSION AND FUTURE WORK

In this research, we were able to identify some interesting patterns. These

patterns have a proper existing rate and will result to a significant potential savings.

From our result, we can know that Pattern 1 and 2 can save the most potential

operations because they are more general and flexible. In the user study 2, we also

verified that our count patterns 1 and 2 works as well. By here, it means we have

already found some useful patterns. Since our final goal is to use these patterns in

situation system, we need to do more experiments to check if these patterns have

general meaning. That is, they will be valuable in all kinds of location based software.

Also, if the sample of the participant for our user study could be enlarged, we may

find more interesting patterns. From this research, we believe our pattern can be

helpful in a situation system and further make the location-based software easier to

use.

www.manaraa.com

35

REFERENCES

[1] Anand S. Rao and Michael P. Georgeff. Modeling rational agents within a

bdi-architecture. In James F. Allen, Richard Fikes, and Erik Sandewall, editors, KR, pages

473–484. Morgan Kaufmann, 1991.

[2] Bratman, Michael. Intentions, Plans, and Practical Reasoning. Harvard University

Press, 1991.

[3] Chang, Carl K., Hsinyi Jiang, Hua Ming, and Katsunori Oyama. Situ: A

situation-theoretic approach to context-aware service evolution. IEEE T. Services

Computing, 2(3):261–275, 2009.

[4] Findlater, Leah and Joanna McGrenere. A comparison of static, adaptive, and

adaptable menus. In Proceedings of the SIGCHI conference on Human factors in

computing systems, CHI ’04, pages 89–96, New York, NY, USA, 2004. ACM.

[5] Gajos, Krzysztof Z., Mary Czerwinski, Desney S. Tan, and Daniel S. Weld. Exploring

the design space for adaptive graphical user interfaces. In Proceedings of the working

conference on Advanced visual interfaces, AVI ’06, pages 201–208, New York, NY, USA,

2006. ACM.

[6] Liu, Jiming, Chi Kuen Wong, and Ka Keung Hui. An adaptive user interface based on

personalized learning. Intelligent Systems, IEEE, 18(2):52–57, mar-apr 2003.

[7] Ming, Hua. 2012. Situf : A Domain Specific Language and A First Step Towards the

Realization of Situ Framework. PhD Dissertation in Computer Science, Iowa State

University.

[8] Ming, Hua, C.K. Chang, K. Oyama, and Hen i Yang. Reasoning about human

intention change for individualized runtime software service evolution. In Computer

Software and Applications Conference (COMPSAC), 2010 IEEE 34th Annual, pages 289 –

296, july 2010.

[9] Ming, Hua, K. Oyama, and C.K. Chang. Human-intention driven self adaptive

software evolvability in distributed service environments. In Future Trends of

Distributed Computing 95 Systems, 2008. FTDCS ’08. 12th IEEE International Workshop

on, pages 51 –57, oct. 2008.

www.manaraa.com

36

[10] Ramachandran, Krish. Adaptive user interfaces for health care applications.

Available at

http://ibm.com/developerWorks, 2009.

[11]Rusch, M. L., S. M. Nusser, L. L. Miller, G. I. Batinov, and K. C. Whitney. (2012).

Spatial Ability and Map-Based Software Applications. The Fifth International

Conference on Advances in Computer-Human Interactions. Valencia, Spain. January

30-February 4, 2012, pp. 35-40.

[12] Shankar, Anil, Sushil J. Louis, Sergiu Dascalu, Linda J. Hayes, and Ramona

Houmanfar. User-context for adaptive user interfaces. In Proceedings of the 12th

international conference on Intelligent user interfaces, IUI ’07, pages 321–324, New

York, NY, USA, 2007. ACM.

[13] Sheer, Richard. The mental state theory of intentions. Philosophy, 79:121–131,

2004.

[14] Son, Young-Jun. 2014. An Extended BDI-Based Model for Human Decision-Making

and Social Behavior: In: Martine Ceberio and Vladik Kreinovich (Editors). Various

Applications in Constraint Programming and Decision Making. pp. 171-174.

[15] Tsandilas, T. and M. C. Schraefel. Usable adaptive hypermedia systems. New

Review of Hypermedia and Multimedia, 10(1):5–29, 2004.

[16] Viano, Gianni, Andrea Parodi, James Alty, Chris Khalil, Inaki Angulo, Daniele

Biglino, Michel Crampes, Christophe Vaudry, Veronique Daurensan, and Philippe

Lachaud. Adaptive user interface for process control based on multi-agent approach.

In Proceedings of the working conference on Advanced visual interfaces, AVI ’00,

pages 201–204, New York, NY, USA, 2000. ACM.

[17] Benyon, D., A. Crerar and S. Wilkinson. 2001. Individual differences and inclusive

design. In User interfaces for all – Concepts, methods and tools, C. Stephandis (Ed.).

Mahwah, NJ: Lawrence Erlbaum, pp. 21-46.

[18] Langley, P. 1997. User Modeling in Adaptive Interfaces. Seventh International

Conference on User Modeling. Banff, Alberta. 357-71.

[19] Billsus, D., C. A. Brunk, C. Evans, B. Gladish, and M. Pazzani. 2002. Adaptive interfaces

for ubiquitous web access. Communications of the ACM. 45(5). 34 - 38.

[20] Tsandilas, T. and M. C. Shraefel. 2004. Usable adaptive hypermedia systems. New

Review of HyperMedia and Multimedia. 10(1) 5-29.

[21] Nguyen, N. T. and J. Sobecki. 2003. Using consensus methods to construct adaptive

www.manaraa.com

37

interfaces in multimodal web-based systems. Universal Access in the Information Society.

2(4). 342-358.

[22] Mitchell, J. and B. Shneiderman 1989. Dynamic versus static menus: an exploratory

comparision. ACM SigCHI Bulletin. 20(4). 33-37.

[23] Benyon, D. 1993. Accommodating individual differences through an adaptive user

interface. In M. Schneider-Hufschmidt, T. Kuhme, and U. Malinowski (eds.). Adaptive

User Interfaces – Results and Prospects. Amsterdam, North-Holland: Elsevier Science

Publications.

[24] Viano G., J. Alty, I. Angulo, D. Biglino, m. Crampes, V. Daurensan, A. Parodi, C. Khalil, C.

Vaudry, and P. Lachaud. 2004. Adaptive user interface for process control based on

multi-agent approach. AVI 2004. Palermo, Italy. 201-204.

	2015
	Understanding and identifying useful patterns in location-based software
	Tianyu Meng
	Recommended Citation

	Microsoft Word - 350329_pdfconv_355449_1C780994-F3C1-11E4-9000-AE5A2E1BA5B1

